boot1
Just like it's Wii counterpart, boot1 is the second-stage bootloader which is loaded by boot0. boot1 is stored inside the first SLC NAND blocks in the form of an ancast image. Unlike the Wii boot1, this boot1 is the final bootloader of the Wii U, much like the Wii boot2. There are always two copies of boot1 inside the SLC NAND and, together, these images form the only blocks that are left as plain data (not encrypted with the OTP SLC key).
boot1 runs from on-die SRAM starting at address 0x0D400000 and its size must not exceed the total of 0xF800 bytes (it's size is checked by boot0).
During the boot process, boot0 loads boot1 from NAND and decrypts it using an AES key stored in the console's OTP. Immediately after, boot0 permanently disables access to this key by clearing the appropriate value in the LT_EFUSEPROT register.
boot1 then loads IOSU from the filesystem as an ancast image, and decrypts and verifies it, similar to what boot0 does with boot1.
What follows are general descriptions and pseudo-code that illustrates the several sub-stages of the Wii U's boot1.
Initialization
boot1 is decrypted in place at address 0x0D400000, but runs from address 0x0D400200 due to the first 0x200 bytes containing it's ancast header. The first step in boot1's execution is setting up the stack and jumping to the main routine:
// Clear all memory from the end of boot1 // up to the middle of boot0 (hides main functions) memset_range(0x0D40DF40, 0x0D4125F0, 0, 0x04); u32 stack_size = *(u32 *)0x0D40DA80; // Setup boot1's stack pointer SP = 0x0D40EDB0 + stack_size // Change into THUMB mode and call main sub_D40C82C(0x0D400200); // Deadlock loc_D400278();
Main
This is the bulk of the second-stage bootloader. Contrary to boot0, boot1 doesn't signal execution stages to debug ports via GPIO, but it can use the NDEV_LED GPIO for outputting error and status codes. Nonetheless, what follows is a breakdown of the main routine into relevant snippets of pseudo-code.
Start
boot1 grabs the PRSH/PRST IV from memory, disables boot0 mapping and configures IOPI, IOMEM and EXI.
// Copy the PRSH IV from memory memcpy(prsh_iv_buf, 0x0D40CC11, 0x10); // Get timer value u32 time_boot1_start = *(u32 *)HW_TIMER; // Clear NDEV_LED state *(u32 *)(0x0D40E258) = 0; u32 spare1_val = *(u32 *)HW_SPARE1; // Disable boot0 mapping *(u32 *)HW_SPARE1 = spare1_val | 0x1000; // Assert RSTB_IOPI and RSTB_IOMEM u32 resets_val = *(u32 *)HW_RSTCTRL; resets_val &= 0xFFF7FFFF; resets_val |= 0x80000; resets_val &= 0xFFFBFFFF; resets_val |= 0x40000; *(u32 *)HW_RSTCTRL = resets_val; // Enable EXI u32 aip_prot_val = *(u32 *)HW_AIPPROT; aip_prot_val &= ~(0x01); aip_prot_val |= 0x01; *(u32 *)HW_AIPPROT = aip_prot_val;
TestHardware
boot1 setups the fan's speed and power, initializes I2C for SMC and validates the hardware version.
// Send NDEV_LED marker send_ndev_led(0x30); // Set FanSpeed state sub_D405570(0x01); // Set FanPower state sub_D4055BC(0x01); u32 i2c_clock = 0x0A; u32 i2c_channel = 0x01; // Setup SMC I2C i2c_init(i2c_clock, i2c_channel); // Pulse the OFFIndicator via SMC onoff_write(0x1F); u32 iop2x_val = *(u32 *)LT_IOP2X; // Adjust IOP clock multiplier if (iop2x_val & 0x04) { // Enable IRQ 12 (LT) *(u32 *)LT_ARMIRQFLAGLT = 0x1000; *(u32 *)LT_ARMIRQMASKLT = 0x1000; // Switch the multiplier back to 1x *(u32 *)LT_IOP2X = 0x01; // Wait for hardware interrupt sub_D40C870(); // Disable IRQ 12 (LT) *(u32 *)LT_ARMIRQMASKLT = 0; } u32 get_hw_ver_res = get_hw_version(hw_ver_buf); // Failed to get the hardware version if (get_hw_ver_res) { // Write the error message in the stack printf("BOOT1_FAIL: Unable to get ASIC version. (0x1F)"); // Flash the NDEV_LED with the error code send_ndev_led(0xF1); // Deadlock loc_D400A3A(); } u32 hw_ver = *(u32 *)hw_ver_buf; // Hardware is not Latte if (!(hw_ver & 0x0F000000)) { // Write the error message in the stack printf("BOOT1_FAIL: NOT supported hardware version. (0x1F)"); // Flash the NDEV_LED with the error code send_ndev_led(0xF1); // Deadlock loc_D400A3A(); } // Hardware is Latte A11 or A12 if ((hw_ver >> 0x18) == 0x21) { // Write the error message in the stack printf("BOOT1_FAIL: NOT supported hardware version. (0x1F)"); // Flash the NDEV_LED with the error code send_ndev_led(0xF1); // Deadlock loc_D400A3A(); } u32 get_board_rev_res = get_board_revision(board_rev_buf); u32 board_rev = *(u32 *)board_rev_buf; // Failed to get board revision if (get_board_rev_res) { // Write the error message in the stack printf("BOOT1_FAIL: Unable to get board revision. (0x1F)"); // Flash the NDEV_LED with the error code send_ndev_led(0xF1); // Deadlock loc_D400A3A(); }
GetRtcEvents
boot1 setups EXI for the RTC and collects events from RTC_CONTROL0 and RTC_CONTROL1.
// Setup EXI0 for RTC config_exi_rtc(); u32 RTC_CONTROL0 = 0x21000C00; // Read RTC_CONTROL0 u32 exi_read_res = exi_read(RTC_CONTROL0, rtc_control0_buf); // Failed to read if (exi_read_res) { // Pulse the ONIndicator onoff_write(0x13); goto init_mem; } u32 RTC_CONTROL1 = 0x21000D00; // Read RTC_CONTROL1 u32 exi_read_res = exi_read(RTC_CONTROL1, rtc_control1_buf); // Failed to read if (exi_read_res) { // Pulse the ONIndicator onoff_write(0x13); goto init_mem; } u32 syscfg1_val = *(u32 *)LT_SYSCFG1; u32 pflags_val = 0; // Check if the CMPT_RETSTAT0 flag is raised if (syscfg1_val & 0x04) pflags_val = 0x100000; // Set CMPT_RETSTAT0 power flag // Check if the CMPT_RETSTAT1 flag is raised if (syscfg1_val & 0x08) pflags_val |= 0x80000; // Set CMPT_RETSTAT1 power flag u32 rtc_ctrl0 = *(u32 *)rtc_control0_buf; // Check if the POFFLG_FPOFF flag is raised if (rtc_ctrl0 & 0x04000000) pflags_val |= 0x01000000; // Set POFF_FORCED power flag // Check if the POFFLG_4S flag is raised if (rtc_ctrl0 & 0x02000000) pflags_val |= 0x00800000; // Set POFF_4S power flag // Check if the POFFLG_TMR flag is raised if (rtc_ctrl0 & 0x01000000) pflags_val |= 0x00400000; // Set POFF_TMR power flag // Check if the PONLG_TMR flag is raised if (rtc_ctrl0 & 0x00010000) pflags_val |= 0x02000000; // Set PON_TMR power flag // Check if PONFLG_SYS is raised if (rtc_ctrl0 & 0x00020000) { pflags_val |= 0x04000000; // Set PON_SMC power flag // Read the SystemEventFlag from SMC sub_D400BD0(0x41, sys_event_buf); u32 sys_event = *(u32 *)sys_event_buf; // POWER button was pressed if (sys_event & 0x00000040) pflags_val |= 0x80000000; // Set PON_POWER_BTN power flag // EJECT button was pressed if (sys_event & 0x00000020) pflags_val |= 0x40000000; // Set PON_EJECT_BTN power flag // Wake 1 signal is active if (sys_event & 0x00000001) pflags_val |= 0x08000000; // Set PON_WAKEREQ1_EVENT power flag // Wake 0 signal is active if (sys_event & 0x00000002) pflags_val |= 0x10000000; // Set PON_WAKEREQ0_EVENT power flag // BT interrupt request is active if (sys_event & 0x00000004) pflags_val |= 0x20000000; // Set PON_WAKEBT_EVENT power flag // Timer signal is active if (sys_event & 0x00000008) pflags_val |= 0x00020000; // Set PON_SMC_TIMER power flag } // Raise POFFLG_TMR, PONFLG_SYS and some unknown flags exi_write(RTC_CONTROL0, 0x01C20000); u32 rtc_ctrl1 = *(u32 *)rtc_control1_buf; // Check if SLEEP_EN is raised if (rtc_ctrl1 & 0x00000100) pflags_val |= 0x00200000; // Set DDR_SREFRESH power flag u32 mem_mode = 0; // DDR_SREFRESH power flag is set if (pflags_val & 0x00200000) mem_mode = 0x08; // PON_SMC_TIMER power flag is set if (pflags_val & 0x00020000) { // Pulse the CCIndicator onoff_write(0x16); mem_mode |= 0x02; // Set FanSpeed state sub_D405570(0); } else { // Pulse the ONIndicator onoff_write(0x13); }
InitializeMemory
boot1 initializes the memory controller.
// Initialize memory u32 mem_init_res = sub_D4056E8(mem_mode); // Failed to initialize memory if (mem_init_res) { // Write the error message in the stack printf("BOOT1_FAIL: Unable to initialize memory (0x2F)"); // Flash the NDEV_LED with the error code send_ndev_led(0xF2); // Deadlock loc_D400A3A(); }
WriteMem2
boot1 tests MEM2 by writing a pattern over it's first 0x400 bytes.
u32 error_flag = 0; u32 error_count = 0; // Memory is not refreshing if (error_count) { // DDR_SREFRESH power flag is set if (pflags_val & 0x00200000) { // Check memory u32 mem_check_res = sub_D4056B0(mem_mode | 0x60 | 0x04); error_flag += mem_check_res; } else error_flag = 0; // Check memory u32 mem_check_res = sub_D4056B0(mem_mode | 0x60 | 0x08); error_flag |= mem_check_res; // Failed to setup memory if (error_flag != 0) { // Flash the NDEV_LED with the error code send_ndev_led(0xF2); // Deadlock loc_D400A3A(); } u32 mem2_addr = 0x10000000; // Set random data in MEM2 region while (mem2_addr != 0x10000400) { *(u32 *)mem2_addr = 0x12345678; *(u32 *)(mem2_addr + 0x04) = 0x9ABCDEF0; mem2_addr += 0x08; } }
TestMem2
boot1 checks if MEM2 refreshing is working.
u32 byte_count = 0xFF; u32 mem2_test_pattern0 = *(u32 *)mem2_addr; u32 mem2_test_pattern1 = *(u32 *)(mem2_addr + 0x04); // Memory has not refreshed if (mem2_test_pattern0 != 0x12345678) { // Increase error count error_count++; if (error_count < 0x10) goto mem2_test; else { // Deadlock loc_D400A3A(); } } // Memory has not refreshed if (mem2_test_pattern1 != 0x9ABCDEF0) { if (byte_count) { // Increase error count error_count++; if (error_count < 0x10) goto mem2_test; else { // Deadlock loc_D400A3A(); } } } byte_count -= 0x02; // Loop until all memory is checked if (mem2_addr != 0x100003F8) { mem2_addr -= 0x08; goto mem2_check; } // Too many errors if (error_count == 0x10) { // Deadlock loc_D400A3A(); }
ClearMem0
boot1 clears all MEM0 and adjusts IOP clock multiplier if necessary.
// Clear all MEM0 memset(0x08000000, 0, 0x002E0000); // PON_SMC_TIMER power flag is not set if (!(pflags_val & 0x00020000)) { // Change NDEV_LED state *(u32 *)(0x0D40E258) = ~(0x80); u32 iop2x_val = *(u32 *)LT_IOP2X; // Check if the clock multiplier hasn't been changed if (!(iop2x_val & 0x04)) { // Enable IRQ 12 (LT) *(u32 *)LT_ARMIRQFLAGLT = 0x1000; *(u32 *)LT_ARMIRQMASKLT = 0x1000; // Change IOP clock multiplier to 3x *(u32 *)LT_IOP2X = 0x03; // Wait for hardware interrupt sub_D40C870(); // Disable IRQ 12 (LT) *(u32 *)LT_ARMIRQMASKLT = 0; } }
GetBootInfo
boot1 decrypts the PRSH/PRST from MEM2 and parses the "boot_info" structure.
// Send NDEV_LED marker send_ndev_led(0x31); // Store something in MEM1 *(u32 *)0x0000000C = 0x20008000; // Read security level flag from OTP ReadOTP(0x20, sec_lvl_buf, 0x04); u32 sec_lvl = *(u32 *)sec_lvl_buf; bool use_crypto = false; // We are in retail/debug mode if (sec_lvl < 0) { // Read Wii U Starbuck ancast key from OTP ReadOTP(0x24, 0x0D40E240, 0x10); // Store a pointer to the ancast key *(u32 *)0x0D40E250 = ancast_key_addr; // Store a pointer to the ancast modulus *(u32 *)0x0D40E254 = ancast_modulus_addr; use_crypto = true; } // Decrypt PRSH/PRST with Starbuck ancast key sub_D400320(0x10000400, 0x7C00, prsh_iv_buf); // Parse PRSH/PRST sub_D40B030(0x10000400, 0x7C00); // Locate or create new "boot_info" sub_D40AF10(0); // DDR_SREFRESH power flag is set if ((pflags_val & 0x01E00001) == 0x00200000) { *(u32 *)boot_info_08_addr = 0; // Read from boot_info + 0x08 u32 result = sub_D40AB84(boot_info_08_addr); // Got boot_info_08 if (result == 0) { u32 boot_info_08 = *(u32 *)boot_info_08_addr; pflags_val |= (boot_info_08 & 0x101E); } } else { // Clear bit 6 (IsWarmboot) in boot_info_04 sub_D40AE4C(); // Clear bit 3 (HasRamFwImg) in boot_info_04 and reset the RamFwImg fields sub_D40AC7C(); } // Set boot_info_08 sub_D40AC30(pflags_val);
LoadFwImg
boot1 loads, validates and decrypts the IOSU fw.img file.
// Get timer value u32 time_before_fw_load = *(u32 *)HW_TIMER; // Load fw.img u32 fw_load_res = sub_D4017B0(use_crypto); if (fw_load_res) { // Write the error message in the stack printf("BOOT1_FAIL: Unable to load firmware.\n"); // Deadlock loc_D400A3A(); } // Get timer value u32 time_after_fw_load = *(u32 *)HW_TIMER; u32 time_fw_verify = 0; u32 time_fw_decrypt = 0; if (use_crypto) { // Get timer value u32 time_before_fw_verify = *(u32 *)HW_TIMER; // Initialize SHA-1 engine 1 (SHA) sub_D40C878(0x01); // Copy ancast signature (from ancast_hdr + 0x20 to ancast_hdr + 0x1A0) memcpy(0x0D40E000, 0x01000020, 0x180); // Copy ancast hash block (from ancast_hdr + 0x1A0 to ancast_hdr + 0x200) memcpy(0x0D40E180, 0x010001A0, 0x60); u32 ancast_img_size = *(u32 *)0x0D40E18C; // Check ancast image size if (ancast_img_size > 0x00F80000) printf("BOOT1: Firmware image of size 0x%x is too big.", ancast_img_size); else printf("BOOT1: Loaded firmware image size is 0x%x.", ancast_img_size); if (board_rev >= 0x04) { u32 ancast_version = *(u32 *)0x0D40E1A4; // Version is too old if (ancast_version <= 0x01) { printf("BOOT1_FAIL: Not able to boot older SDK."); printf("BOOT1_FAIL: Unable to authenticate firmware image (0x6F)."); // Flash the NDEV_LED with the error code send_ndev_led(0xF6); // Deadlock loc_D400A3A(); } } // Clear up the SHA-1 context memset(sha_ctx_buf, 0, 0x18); // Calculate empty hash u32 sha_calc_res = sha_calc(0x01, 0x00, 0x00, sha_ctx_buf); // Failed to calculate if (!sha_calc_res) { // Send execution stage marker send_ndev_led(0x41); printf("BOOT1_FAIL: Unable to authenticate firmware image (0x6F)."); // Flash the NDEV_LED with the error code send_ndev_led(0xF6); // Deadlock loc_D400A3A(); } // Clear up the SHA-1 context memset(sha_ctx_buf, 0, 0x18); // Setup the SHA-1 context *(u32 *)sha_ctx_buf = sha_ctx_buf + 0x18; // end *(u32 *)(sha_ctx_buf + 0x04) = 0x02; // mode (final) *(u32 *)(sha_ctx_buf + 0x08) = 0x0D40E180; // in_buf *(u32 *)(sha_ctx_buf + 0x0C) = 0x60; // in_size *(u32 *)(sha_ctx_buf + 0x10) = 0x0D40E200; // out_buf *(u32 *)(sha_ctx_buf + 0x14) = 0x14; // out_size // Calculate the ancast_hash_blk hash sha_calc_res = sha_calc(0x01, 0x00, 0x00, sha_ctx_buf); // Failed to calculate if (!sha_calc_res) { // Send execution stage marker send_ndev_led(0x42); printf("BOOT1_FAIL: Unable to authenticate firmware image (0x6F)."); // Flash the NDEV_LED with the error code send_ndev_led(0xF6); // Deadlock loc_D400A3A(); } u32 ancast_header_addr = 0x0D40E000; u32 rsa_exponent_addr = 0x0D40DC00; u32 ancast_hash_addr = 0x0D40E200; u32 ancast_modulus_addr = *(u32 *)0x0D40E254; // Calculate ancast image signature u32 rsa_calc_res = rsa_calc(ancast_hash_addr, ancast_modulus_addr, ancast_header_addr + 0x04, rsa_exponent_addr, 0x04); // Failed to calculate if (rsa_calc_res) { // Send execution stage marker send_ndev_led(0x43); printf("BOOT1_FAIL: Unable to authenticate firmware image (0x6F)."); // Flash the NDEV_LED with the error code send_ndev_led(0xF6); // Deadlock loc_D400A3A(); } u16 ancast_header_1A0 = *(u32 *)0x0D40E180; // This field must be NULL if (ancast_header_1A0) { // Send execution stage marker send_ndev_led(0x44); printf("BOOT1_FAIL: Unable to authenticate firmware image (0x6F)."); // Flash the NDEV_LED with the error code send_ndev_led(0xF6); // Deadlock loc_D400A3A(); } u8 ancast_header_1A2 = *(u32 *)0x0D40E182; // This field must be NULL if (ancast_header_1A2) { // Send execution stage marker send_ndev_led(0x45); printf("BOOT1_FAIL: Unable to authenticate firmware image (0x6F)."); // Flash the NDEV_LED with the error code send_ndev_led(0xF6); // Deadlock loc_D400A3A(); } u8 ancast_header_1A3 = *(u32 *)0x0D40E183; // This field must be NULL if (ancast_header_1A3) { // Send execution stage marker send_ndev_led(0x45); printf("BOOT1_FAIL: Unable to authenticate firmware image (0x6F)."); // Flash the NDEV_LED with the error code send_ndev_led(0xF6); // Deadlock loc_D400A3A(); } u32 ancast_header_1C8_start_addr = 0x0D40E1A8; u32 ancast_header_1C8_end_addr = 0x0D40E1E0; // Last 0x38 bytes in the ancast header must be NULL while (ancast_header_1C8_start_addr != ancast_header_1C8_end_addr) { u32 ancast_header_unk = *(u32 *)ancast_header_1C8_start_addr; // Must be NULL if (ancast_header_unk) { // Send execution stage marker send_ndev_led(0x46); printf("BOOT1_FAIL: Unable to authenticate firmware image (0x6F)."); // Flash the NDEV_LED with the error code send_ndev_led(0xF6); // Deadlock loc_D400A3A(); } ancast_header_1C8_start_addr++; } u32 ancast_img_body_size = *(u32 *)0x0D40E18C; u32 ancast_img_body_block_count = (ancast_img_body_size >> 0x0C); // Bad image size if (!ancast_img_body_block_count) { // Send execution stage marker send_ndev_led(0x48); printf("BOOT1_FAIL: Unable to authenticate firmware image (0x6F)."); // Flash the NDEV_LED with the error code send_ndev_led(0xF6); // Deadlock loc_D400A3A(); } // Bad image size alignment if (ancast_img_body_size & 0x00000FFF) { // Send execution stage marker send_ndev_led(0x48); printf("BOOT1_FAIL: Unable to authenticate firmware image (0x6F)."); // Flash the NDEV_LED with the error code send_ndev_led(0xF6); // Deadlock loc_D400A3A(); } // Initialize SHA-1 engine 1 (SHA) sub_D40C878(0x01); // Clear up the SHA-1 context memset(sha_ctx_buf, 0, 0x18); // Calculate empty hash sha_calc_res = sha_calc(0x01, 0x00, 0x00, sha_ctx_buf); // Failed to calculate if (!sha_calc_res) { // Send execution stage marker send_ndev_led(0x49); printf("BOOT1_FAIL: Unable to authenticate firmware image (0x6F)."); // Flash the NDEV_LED with the error code send_ndev_led(0xF6); // Deadlock loc_D400A3A(); } u32 block_count = 0; u32 ancast_img_body_addr = 0x01000200; // Calculate the ancast image body hash while (block_count < ancast_img_body_block_count) { // Clear up the SHA-1 context memset(sha_ctx_buf, 0, 0x18); // Setup the SHA-1 context *(u32 *)sha_ctx_buf = sha_ctx_buf + 0x18; // end *(u32 *)(sha_ctx_buf + 0x04) = 0x01; // mode (update) *(u32 *)(sha_ctx_buf + 0x08) = ancast_img_body_addr; // in_buf *(u32 *)(sha_ctx_buf + 0x0C) = 0x1000; // in_size *(u32 *)(sha_ctx_buf + 0x10) = 0x0D40E200; // out_buf *(u32 *)(sha_ctx_buf + 0x14) = 0x14; // out_size // Calculate (update) ancast body hash (0x1000 bytes at a time) sha_calc_res = sha_calc(0x01, 0x00, 0x00, sha_ctx_buf); // Failed to calculate if (!sha_calc_res) { // Send execution stage marker send_ndev_led(0x4A); printf("BOOT1_FAIL: Unable to authenticate firmware image (0x6F)."); // Flash the NDEV_LED with the error code send_ndev_led(0xF6); // Deadlock loc_D400A3A(); } block_count++; ancast_img_body_addr += 0x1000; } // Clear up the SHA-1 context memset(sha_ctx_buf, 0, 0x18); // Setup the SHA-1 context *(u32 *)sha_ctx_buf = sha_ctx_buf + 0x18; // end *(u32 *)(sha_ctx_buf + 0x04) = 0x02; // mode (final) *(u32 *)(sha_ctx_buf + 0x08) = 0; // in_buf *(u32 *)(sha_ctx_buf + 0x0C) = 0; // in_size *(u32 *)(sha_ctx_buf + 0x10) = 0x0D40E200; // out_buf *(u32 *)(sha_ctx_buf + 0x14) = 0x14; // out_size // Calculate ancast body hash sha_calc_res = sha_calc(0x01, 0x00, 0x00, sha_ctx_buf); // Failed to calculate if (!sha_calc_res) { // Send execution stage marker send_ndev_led(0x4A); printf("BOOT1_FAIL: Unable to authenticate firmware image (0x6F)."); // Flash the NDEV_LED with the error code send_ndev_led(0xF6); // Deadlock loc_D400A3A(); } u32 body_hash_addr = 0x0D40E200; u32 ancast_body_hash_addr = 0x0D40E190; // Compare generated hash with the hash in the ancast header u32 memcmp_res = memcmp(ancast_body_hash_addr, body_hash_addr, 0x14); // Hashes don't match if (memcmp_res) { // Send execution stage marker send_ndev_led(0x4B); printf("BOOT1_FAIL: Unable to authenticate firmware image (0x6F)."); // Flash the NDEV_LED with the error code send_ndev_led(0xF6); // Deadlock loc_D400A3A(); } // Get timer value u32 time_after_fw_verify = *(u32 *)HW_TIMER; u32 time_before_fw_decrypt = *(u32 *)HW_TIMER; u32 starbuck_ancast_iv_addr = 0x0D40DAC0; // Decrypt Starbuck ancast image u32 decrypt_res = sub_D400320(ancast_img_body_addr, ancast_img_body_size, starbuck_ancast_iv_addr); // Failed to decrypt if (!decrypt_res) { printf("BOOT1_FAIL: Unable to decrypt firmware image (0x7F)."); // Flash the NDEV_LED with the error code send_ndev_led(0xF7); // Deadlock loc_D400A3A(); } // Calculate time spent verifying fw.img u32 time_fw_verify = (time_before_fw_verify - time_after_fw_verify); // Get timer value u32 time_after_fw_decrypt = *(u32 *)HW_TIMER; // Calculate time spent decrypting fw.img u32 time_fw_decrypt = (time_after_fw_decrypt - time_before_fw_decrypt); }
Cleanup
boot1 clears all sensitive data from memory, locks out two blocks in the OTP and turns on the ODD.
// Clear Wii U Starbuck ancast key from memory memset(0x0D40E240, 0, 0x10); // Clear the exponent from memory memset(0x0D40DC00, 0, 0x04); // Clear the RSA modulus from memory memset(0x0D40DB00, 0, 0x100); // Clear Wii U Starbuck ancast IV from memory memset(0x0D40DAC0, 0, 0x10); // Lock out two additional blocks in the OTP u32 efuseprot_val = *(u32 *)LT_EFUSEPROT; efuseprot_val &= 0xEF7FFFFF; *(u32 *)LT_EFUSEPROT = efuseprot_val; u32 onoff_val = 0; // PON_SMC_TIMER and an unknown power flag are set if (pflags_val & 0x00020010) { // Set DcdcPowerControl2 GPIO's state sub_D405524(0x00); onoff_val = 0x15; } else { // Turn on ODDPower via SMC onoff_write(0x00); // Set DcdcPowerControl2 GPIO's state sub_D405524(0x01); onoff_val = 0x10; } // Turn on the ONIndicator (0x10) or the CCIndicator (0x15) onoff_write(onoff_val);
Finish
boot1 writes the time spent on various stages to the "boot_info" structure and jumps to the ELF loading stub in the decrypted IOSU fw.img file.
// Get timer value u32 time_boot1_end = *(u32 *)HW_TIMER; // Calculate time spent running boot1 u32 time_boot1 = (time_boot1_end - time_boot1_start); // Write to boot_info_38 sub_D40AD2C(0x00, time_boot1); // Calculate time spent reading fw.img u32 time_fw_load = (time_before_fw_verify - time_before_fw_load) // Write to boot_info_3C sub_D40AD2C(0x01, time_fw_load); // Write to boot_info_40 sub_D40AD2C(0x02, time_fw_verify); // Write to boot_info_44 sub_D40AD2C(0x03, time_fw_decrypt); // Read times stored by boot0 u32 time_boot0 = *(u32 *)0x0D417FE0; u32 time_boot1_load = *(u32 *)0x0D417FE4; u32 time_boot1_verify = *(u32 *)0x0D417FE8; u32 time_boot1_decrypt = *(u32 *)0x0D417FEC; // Write to boot_info_48 sub_D40AD2C(0x04, time_boot0); // Write to boot_info_4C sub_D40AD2C(0x05, time_boot1_load); // Write to boot_info_50 sub_D40AD2C(0x06, time_boot1_verify); // Write to boot_info_54 sub_D40AD2C(0x07, time_boot1_decrypt); // Set bit 2 (HasBootTimeStats) in boot_info_04 sub_D40ABCC(); // Increase boot_info_0C by 1 sub_D40AEB0(); printf("BOOT1: Starting firmware relocator.\n"); // Flash the NDEV_LED with the status code send_ndev_led(0x88); // Jump to IOSU's ELF loader sub_0x01000300(); // Deadlock loc_D400A3A();
BootInfo
This is the "boot_info" structure used for sharing information between boot1 and IOS-MCP.
Offset | Size | Description |
---|---|---|
0x0 | 0x4 | Version |
0x4 | 0x4 | BootFlags |
0x8 | 0x4 | PowerFlags |
0xC | 0x4 | BootCount |
0x10 | 0x4 | CurrentSystemMode |
0x14 | 0x4 | NextSystemMode |
0x18 | 0x4 | |
0x1C | 0x4 | |
0x20 | 0x4 | |
0x24 | 0x4 | |
0x28 | 0x4 | RamFwImgOsIdHigh |
0x2C | 0x4 | RamFwImgOsIdLow |
0x30 | 0x4 | RamFwImgAddress |
0x34 | 0x4 | RamFwImgSize |
0x38 | 0x4 | Boot1MainTime |
0x3C | 0x4 | Boot1ReadTime |
0x40 | 0x4 | Boot1VerifyTime |
0x44 | 0x4 | Boot1DecryptTime |
0x48 | 0x4 | Boot0MainTime |
0x4C | 0x4 | Boot0ReadTime |
0x50 | 0x4 | Boot0VerifyTime |
0x54 | 0x4 | Boot0DecryptTime |
BootFlags
Bits | Description |
---|---|
0 | IsPowerTransitionsEnabled |
1 | IsProd |
2 | HasBootTimeStats |
3 | HasRamFwImg |
4 | |
5 | IsBootModeNand |
6 | IsWarmboot |
7 | HasBootInfo |
8 | |
9 | |
10 | |
11 | |
12 | |
13 | |
14 | |
15 | IsPonEjectBtn |
16-31 |
PowerFlags
Bits | Description |
---|---|
0 | PFLAGS_INVALID |
1 | PON_WAKEREQ1_EVENT_SW |
2 | PON_WAKEBT_EVENT_SW |
3 | PON_POWER_BTN_SW |
4 | ENTER_BG_NORMAL_MODE |
5 | |
6 | |
7 | |
8 | |
9 | PON_SMC_DISC |
10 | PON_SYNC_BTN |
11 | |
12 | |
13 | PON_RESTART |
14 | |
15 | |
16 | PON_COLDBOOT |
17 | PON_SMC_TIMER |
18 | |
19 | CMPT_RETSTAT1 |
20 | CMPT_RETSTAT0 |
21 | DDR_SREFRESH |
22 | POFF_TMR |
23 | POFF_4S |
24 | POFF_FORCED |
25 | PON_TMR |
26 | PON_SMC |
27 | PON_WAKEREQ1_EVENT |
28 | PON_WAKEREQ0_EVENT |
29 | PON_WAKEBT_EVENT |
30 | PON_EJECT_BTN |
31 | PON_POWER_BTN |
SystemMode
Bits | Description |
---|---|
0 | Off |
1 | Compat |
2 | Standby |
3 | Restart |
4-14 | |
15 | WiiReturn |
16-17 | |
18 | Recovery |
19 | Eco |
20 | Normal |
21-31 |
Error codes
boot1 sends error and status codes through the NDEV_LED GPIO.
Value | Description |
---|---|
0xF1 | Invalid hardware version |
0xF2 | Failed to initialize memory |
0xF3 | Failed to initialize Toucan |
0xF4 | Failed to read packages from Toucan |
0xF5 | Failed to read firmware image from Toucan |
0xF6 | Failed to authenticate firmware image |
0xF7 | Failed to decrypt firmware image |